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ABSTRACT

Numerical methods are widely used to obtain solutions of fluid flow
problems because they well compliment experimental methods. The
numerical results obtained are however never exact due to errors em-
anating from the scheme used in discretizing the governing equations
and the flow domain. For convection-diffusion flow, the magnitudes of
these errors vary depending on the scheme used to interpolate the
nodal values of the flow quantities to the interfaces. The precision lev-
el of an interpolation scheme is determined by its ability to minimize
these errors hence generating results that are consistent with experi-
mental results. This paper documents the performance of three linear
interpolation schemes; upwind differencing, central differencing
scheme and the hybrid scheme in obtaining velocity profiles for a con-
vection-diffusion turbulent flow field. The field variables present in
the governing equations are decomposed into a mean and a fluctuat-
ing component and averaged so as to reduce the enormous scales in-
herent in a turbulent flow regime. The closure problem was solved
using the turbulence model. The turbulence equations have been
converted into discrete form using the robust finite volume discretiza-
tion technique. The discretized equations are solved using a segregat-
ed pressure-based algorithm. The numerical results were validated
using the benchmark results of Ampofo and Karayiannis, (2003). The
results revealed that linear interpolation schemes are not appropriate
in analyzing velocity distribution for confined convection-diffusion
turbulent flows because the results obtained using all the three linear
schemes were inconsistent with experimental results.
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Background of the study

In fluid dynamics, flow behavior is analyzed
experimentally, analytically or numerically.
Though experimental methods are capable of
producing physically realistic results, they are
expensive, and less flexible. Analytical solutions
of most flows occurring in practical applications
are either unavailable, or computationally
inefficient. Solutions of most flows are thus
obtained numerically. However, the results are
never exact due to discretization errors inherent
in numerical methods. In the Finite volume
discretization method, the solution domain is
subdivided into cells referred to as finite volumes.
The transported variable is stored at the center of
the finite volume. Since the flow is continuous, the
flux entering a given volume is identical to the flux
leaving the adjacent volume then, the method is
conservative. The finite volume discretization
geometrically flexible and
therefore be used for any type of geometry. The
method uses integral formulation of conservation
laws which makes it superior to other numerical
methods because in differential form, one makes
the assumption that the solution is continuous.
The major challenge of the finite volume method
is obtaining the interface values of flow variables
in a convection-diffusion flow field. Various
schemes that interpolate the centered values of
the flow quantities to the interfaces are found in
literature. Each of these schemes is anchored on a
certain assumption about the distribution of the
flow quantity from the center of a finite volume to
the This paper documents the
performance of three linear interpolation
schemes in analyzing velocity profiles for a
convection-diffusion turbulent flow in a cavity.

method is can

interfaces.

Review of Previous Related Studies

Various interpolation schemes have over the
years been used to interpolate nodal values of
analysis  of
temperature and velocity distribution in a cubic
enclosure locally heated from below was carried

flow variables. A numerical
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out by (2) in 2003. The equations governing the
flow were discretized using the Finite Difference
approximation method. The Central Differencing
scheme was used to obtain interphase values of
the dependent variables.

Results revealed

unstable thermal stratification within the
enclosure.

In 2013, a comparative study of three
numerical turbulence models (

k—¢&,k—w andk—w—-SST)
heat transfer due to natural convection inside an
air filled differentially heated cavity, was carried
out by (1).The flow regime was considered
turbulent. The Finite Difference Approximation
method coupled with the Hybrid differencing
scheme was used. The results showed that the
k —@—SST model performed better than the
k —&and the k—® turbulence models in the
whole enclosure.

A numerical analysis of steady natural
convection phenomena of air in a square cavity
heated from the bottom was carried out by (5) in
2015. The governing equations along with the
boundary conditions were discretized using the
Finite Difference Method coupled with the central
difference interpolation scheme. Results showed
that increase in temperature difference between
the vertical walls affects the fluid dynamic
behavior by increasing the intensity of flow in the
enclosure. Conduction was found to dominate low
Rayleigh number flows while convection was
found to be dominant for higher Rayleigh number
flows.

In 2017, a parametric study of turbulent
natural convection in an enclosure with localized
heating and cooling was carried out by (4). The
Finite Volume method coupled with the Power
Law interpolation scheme was used. The results
revealed that the velocity decreases with distance
from the walls,
Rayleigh number, and decreases with increase in
aspect ratio.

In 2017, natural convection of air in a square
cavity with partially thermally active side walls
was studied by (3) The behavior of boundary
layers at variable Rayleigh numbers

in predicting

increases with increase in

was



analyzed. The Finite Volume Method was used to
discretize the governing equations. The Central
Differencing interpolation scheme was used to

Governing Equations

The fluid flow is governed by the general
conservation laws of mass, momentum and
energy.

Mass Conservation Equation

op O 1
L —(pu,)=0 (€3]
ot (o)

Momentum Conservation Equation

0 0 oP ol ou ou ou
—(pu)+—(puu,)=——+pg, +— Ly—Dy+p s, —+
PG o, (puyu;) o, TP ax, {”(axj ax[) Hy0; 6x,\}

(2)

Energy Conservation Equation
0 ?)+ﬂT[Z‘I;+6g1pJ+®
X . X
J j J (3)

p{; (c,r)+ § (CpujT):| - ai[ﬂ
In a turbulent flow field, each of the flow
variables is regarded as consisting of a mean or
average value @ and a fluctuating value (¢’)
such that:
#x.1)=¢'(x.0)+9(0) @)
¢ Denotes the value of a flow property at a
particular instance and location, whereasgﬁ and
@' denotes the mean and fluctuating values of ¢

respectively. This technique of separating the
average and the fluctuating parts of a quantity is
referred to as Reynolds decomposition. The

average value % is defined as
(5)

where At is the time averaging interval chosen
such that it is sufficiently large. This implies that

the mean value @is a function of space only.
Consequently,

Hx.t)=¢(x,) (6)
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obtain interface values. Results showed that for

10° < Ra<10°%, the flow regime was laminar.

The governing equations 1-3 are decomposed
and averaged, and assumptions coupled with the
Boussinesq assumption imposed to yield

ouU ,

L=0 (7)
ox;
ouU, oU,  1oP a8 oUu —

, =t —|v—L—uu, |+

ot ! ox, pox, ox,| O, !

1= BT -1,)le,. (8)
2

Oy o 0T 0 ©)
o 7 ox, oxt; ox;

Treatment of Turbulent Correlations

In equations (8) and (9), the correlations uu

and u jT are unknown. These terms emanate

from the fluctuation motion. In addition to the
stresses caused by pressure and viscosity effects,
a fluid element experiences stresses emanating
from the turbulent fluctuations. These
correlations account for the additional
momentum and energy transport in turbulent
flow. The presence of these turbulent correlations
in the Reynolds averaged equations therefore
creates need for closure. Researchers have over
the years attempted to resolve the closure
problem. Among the numerous attempts is
turbulence modeling, an approach that either
expresses the turbulent correlations in terms of
known quantities or through direct resolution of
the correlations. In turbulence modeling, the k —
equation is the most fundamental since it
describes the budget of turbulent kinetic energy.
The equation is given as



(10)

The turbulent dissipation ¢ in the k£ — & model
represents the rate of dissipation of turbulent
kinetic energy. The & - equation is derived from
the Navier- Stokes equation for fluctuation
vorticity.

Modeling the Unknown Correlations in the k
- Equation

The kinetic energy equation (10) has most of

its terms containing unknown correlations

emanating from velocity fluctuations in the
turbulent flow. It is therefore necessary that we
model these correlations by use of similarity
considerations together with the Boussinesq

assumptions. The modeled kinetic energy

equation is given as

M@kﬁ@}@@% w,)@k}ﬂgw_g
o ox, ox; ox, |ox;, Ox; x, o, Ox,
(11)
where ¢ is the dissipation rate of turbulent
kinetic energy.
In order to obtain the k — & turbulence model,
we need an equation for & . According to (8),
e=c ko
(12)
Substituting equation (12) into equation (11)
yield

g(ik)nti( k)—fi — pululu, +p'u) — pp— |- pul’ i
ot & Ox . PUR)= ox, 2pu[ I I—Jﬁ,—" ”axj o /6x/.
! un m Vv Vi

— Ou! ou!
+ Pepul’ — p o
Vil x; o,

vir
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ok ok Ou, Ou; |ou, 0
Ky Ky | P B0 O g, 40} K
ot ox; Ox;, Ox; |Ox; Ox,
+ ﬂgi——cﬂka}

k i

(13)

The  Shear-Stress Transport k-
Turbulence
Model

The k — & turbulence model is preferred in
explaining flow behavior in the free stream region
of a flow domain, while the X — @ model best
accounts for flow behavior near a solid boundary.
Mentor (1994), developed the SST k-
turbulence model by putting into consideration
the strengths and weaknesses of the kK —& and
the k — @ turbulence models. This model makes
use of the k — @ model near the solid boundary,
and transforms to the k —&model in the free
stream region. For this reason, the SST K — @
turbulence model is considered in the current
study because it well accounts for the flow
behavior in the entire flow domain.

The turbulence equations for the SST k — @
are represented as follows:

%+U Ok = 0 I, ok +P +G, -7,
ot J@xj ox Ox;

(14)
90y 22 9 %9 pipo-v,
ot J@xj ox; ox;

15)

The modeled turbulent kinetic energy equation
is represented by equation (14). Using a similar

Ox .

J



approach, we now model equation (15) as
follows:

1_‘w:(u—’_o-wut)’f) :yleY :ﬂ*a)za
D, =200 (1 F)lﬁﬁ_a)
a)8x ax
(16)

Substituting equation (16) into equation (15)
yield:

of modeled equations to obtain the non-
dimensional form of the turbulent equations as
follows:
!
ou’
oX ;
ou; ,ouf — 1oP 0|, /Pr ou; —
U — = + O, |——-uu
or' hox p ox; ox; Ra 0X', !

+[1- BB, (06N T )glg,

=0 (18)

a—“’+U do _ 0 (U+O‘ u)a—a) + P, + a9)
ot j@x. ox v ox, g 20, 20 U’.—J]z @ 0100 (20)
o oxX, ’" JRaPr 0X}| 0X/
1 0k Ow .
@ Ox; O, o' Jox, L, |aX! X! |aX, Raox, “Hox
17) ,Bﬂoggou OAT.Lx &Cyk’a)’\/RaPr
a, RaPr L,
Equations (8), (9),(10) (14) and (17) give the 1)
final set of model equations. 00 o0 p o[, oo L,y [ou ouj|au;
o T ax,  Raox {(U+O—”U’)“X':‘+070w/RaPr ax' " ox; |ox,
Table 1 Model Constants for the SST k— @ x/RaPrﬁw +200,[1- F] m; 5)/: j;’
Turbulence Model. '
(22)
o-k,l Gk,Z O-a),l O-a),2 2% C,u ﬁi,l ﬁi,Z ﬁ*w ﬁ[ Rew
0.85 1 0.5 0.857 0.31 0.09 0.075 0.0828 0.09 0.072 2.95

The set of equations governing the flow contain
more variables than the number of equations. In
fluid dynamics,
dimensional scheme is of paramount importance
in reducing the number of
addition, Non dimensionalization enables both
experimental and analytical results to be
expressed in the most efficient form and makes

the use of a suitable non-

parameters. In

the solution bounded. Besides, it enables us to
obtain results of a flow regime experiencing a
given set of conditions by making use of the
results of a geometrically similar flow. In this
regard, choose U to represent characteristic
velocity, L, to represent the characteristic length
and AT, to

temperature. All other physical properties will be
respective

represent the characteristic

non-dimensionalized using their
values at a reference temperature 7;,. We now

apply the relevant scaling variables to the final set

3.1 Velocity Boundary Conditions

Since the walls of the cavity are considered
solid and impermeable, it means that motion can
only be possible in its own plane, and hence, the
normal components of velocity are zero. This is
because mass cannot penetrate an impermeable
solid surface. Therefore the velocity components
u =v =0.The velocity boundary conditions are
thus stated as follows:

(X_Oy)—v(x:O,y):()
ulx="L,.y)=v(x=L,.y)=0
u(xy 0; (x,y:O)i() (23)
uley=L,)=vlry=1,)=0



Numerical Method
The transport equations presented in section
3.0 can be expressed into a generic conservation
form that comprises of all the processes that
influence the change of a dependent variable in a
finite volume. The generic conservation form of
the transport equations is given as

o 0 5 54”
~ axj (uj¢) r¢ + S
(24)

Where ¢,[';and Sgare the dependent

variable, exchange coefficient and source term of
@ respectively. The generic conservation
equation has four distinct terms which define the
processes that affect the transport of ¢ in a finite
volume. These are the temporal term, the
convection term, the diffusion term and the
source term. According to (7), the integral form of
the generic conservation equation is given as.

0 0 0
e e s gL
(25)

Both the convection and the diffusion terms of
equation (26) represent the flux of ¢ across the
faces of a finite volume.

The discretized form of the generic
conservation equation is given in summation
form as

¢lj — zanb¢nb +blj

a

(26)
i

In equation (26), the coefficient a,, represents
the contribution of each of the neighboring finite
volumes to the dependent variable ¢U , whereas

a, contains the contribution of all terms

influencing @, . The coefficient b contains the

contribution of the source terms. We obtain a
discretization equation of the form of equation
(26) for temperature in each finite volume. We
adopt an iterative segregated algorithm to solve
the equations. The relation below is used to

70

modify the values of the coefficients obtained in
each iteration.

predicted o
l.] = o ¢ + (1 —0o) ¢4_]_

(27)
the relaxation factoriso < 1.

predicted

In equation (27), ¢ is the value of the

o
new iteration whereas ¢ is the value of the

)
solution variable in the previous iteration.

Convergence Criterion
Once the values ¢l.j have been obtained for

temperature in all the finite volumes, the solution
is modified using equation (27). We now obtain
the absolute residual measure of the dependent
variable using the relation below:

R; :‘ai/¢tfi =2 b —H
nb

However, since the values of coefficients a,,

(28)

and b changes in each finite volume, it is
necessary that we obtain the local relative error
by scaling the local residual relative to local value
of the quantity such that

‘al/¢u Zanb nb |

a; P

scal ed

R;

In the entire computational domain, we thus
obtain the overall measure of the scaled residual
as

(29)

Z a¢_zanb nb_b|
R¢ _ ALLCELLS nb
> |ad)

ALL CELLS

Equation (30) is used to monitor the
convergence of an equation. If the overall residual
reduces by three orders of magnitude then, the
solution is said to be approaching the actual
solution. Once the conservation equations have
converged, the solution does not change with
further iteration. Consequently, the conservation
equations are satisfied in the entire solution
domain.

(30)

The schemes are presented.



Results and Discussion
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The results obtained reveal a non-uniform
velocity distribution within the flow domain with
some regions having higher velocities. For all the
three sets of results, velocity is generally high at
the upper right and bottom left regions of the flow
domain. The central part of the flow domain is
virtually stagnant. There are high velocity
gradients along the vertical wall of the cavity
indicating heat transfer by convection. The
magnitude of velocity decreases with increase in
distance from the walls of the cavity. However,
the numerical results obtained using all the three
linear interpolation schemes were inconsistent
with bench mark results.

Conclusion.

Based on the above findings, we conclude that
linear interpolation schemes are not appropriate
for analyzing velocity distribution for convection-
diffusion turbulent flows in confined settings.

Recommendations for Further Study

In order to gain more acumen on interpolation
schemes, we recommend further research in the
following areas:

(i). Analyzing the distribution of other flow
variables like pressure and turbulence in
confined settings.

(ii). Extension of the study to include non-
linear interpolation schemes in analyzing velocity
profiles.

(iii). Extension of the study to include multiple
heat sources in the flow domain.
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