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Numerical methods are widely used to obtain solutions of fluid flow 

problems because they well compliment experimental methods. The 

numerical results obtained are however never exact due to errors em-

anating from the scheme used in discretizing the governing equations 

and the flow domain. For convection-diffusion flow, the magnitudes of 

these errors vary depending on the scheme used to interpolate the 

nodal values of the flow quantities to the interfaces. The precision lev-

el of an interpolation scheme is determined by its ability to minimize 

these errors hence generating results that are consistent with experi-

mental results. This paper documents the performance of three linear 

interpolation schemes; upwind differencing, central differencing 

scheme and the hybrid scheme in obtaining velocity profiles for a con-

vection-diffusion turbulent flow field. The field variables present in 

the governing equations are decomposed into a mean and a fluctuat-

ing component and averaged so as to reduce the enormous scales in-

herent in a turbulent flow regime. The closure problem was solved 

using the   turbulence model. The turbulence equations have been 

converted into discrete form using the robust finite volume discretiza-

tion technique. The discretized equations are solved using a segregat-

ed pressure-based algorithm. The numerical results were validated 

using the benchmark results of Ampofo and Karayiannis, (2003). The 

results revealed that linear interpolation schemes are not appropriate 

in analyzing velocity distribution for confined convection-diffusion 

turbulent flows because the results obtained using all the three linear 

schemes were inconsistent with experimental results.  
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 Background of the study 

 

In fluid dynamics, flow behavior is analyzed 

experimentally, analytically or numerically. 

Though experimental methods are capable of 

producing physically realistic results, they are 

expensive, and less flexible. Analytical solutions 

of most flows occurring in practical applications 

are either unavailable, or computationally 

inefficient. Solutions of most flows are thus 

obtained numerically. However, the results are 

never exact due to discretization errors inherent 

in numerical methods. In the Finite volume 

discretization method, the solution domain is 

subdivided into cells referred to as finite volumes. 

The transported variable is stored at the center of 

the finite volume. Since the flow is continuous, the 

flux entering a given volume is identical to the flux 

leaving the adjacent volume then, the method is 

conservative. The finite volume discretization 

method is geometrically flexible and can 

therefore be used for any type of geometry. The 

method uses integral formulation of conservation 

laws which makes it superior to other numerical 

methods because in differential form, one makes 

the assumption that the solution is continuous. 

The major challenge of the finite volume method 

is obtaining the interface values of flow variables 

in a convection-diffusion flow field. Various 

schemes that interpolate the centered values of 

the flow quantities to the interfaces are found in 

literature. Each of these schemes is anchored on a 

certain assumption about the distribution of the 

flow quantity from the center of a finite volume to 

the interfaces. This paper documents the 

performance of three linear interpolation 

schemes in analyzing velocity profiles for a 

convection-diffusion turbulent flow in a cavity.   

 

Review of Previous Related Studies 

 

Various interpolation schemes have over the 

years been used to interpolate nodal values of 

flow variables. A numerical analysis of 

temperature and velocity distribution in a cubic 

enclosure locally heated from below was carried 

out by (2) in 2003. The equations governing the 

flow were discretized using the Finite Difference 

approximation method.  The Central Differencing 

scheme was used to obtain interphase values of 

the dependent variables. Results revealed 

unstable thermal stratification within the 

enclosure.  

In 2013, a comparative study of three 

numerical turbulence models ( 

SSTkandkk   , ) in predicting 

heat transfer due to natural convection inside an 

air filled differentially heated cavity, was carried 

out by (1).The flow regime was considered 

turbulent. The Finite Difference Approximation 

method coupled with the Hybrid differencing 

scheme was used. The results showed that the 

SSTk  model performed better than the 

k and the k  turbulence models in the 

whole enclosure. 

A numerical analysis of steady natural 

convection phenomena of air in a square cavity 

heated from the bottom was carried out by (5) in 

2015. The governing equations along with the 

boundary conditions were discretized using the 

Finite Difference Method coupled with the central 

difference interpolation scheme. Results showed 

that increase in temperature difference between 

the vertical walls affects the fluid dynamic 

behavior by increasing the intensity of flow in the 

enclosure. Conduction was found to dominate low 

Rayleigh number flows while convection was 

found to be dominant for higher Rayleigh number 

flows. 

In 2017, a parametric study of turbulent 

natural convection in an enclosure with localized 

heating and cooling was carried out by (4). The 

Finite Volume method coupled with the Power 

Law interpolation scheme was used. The results 

revealed that the velocity decreases with distance 

from the walls, increases with increase in 

Rayleigh number, and decreases with increase in 

aspect ratio. 

In 2017, natural convection of air in a square 

cavity with partially thermally active side walls 

was studied by (3) The behavior of boundary 

layers at variable Rayleigh numbers was 
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analyzed. The Finite Volume Method was used to 

discretize the governing equations. The Central 

Differencing interpolation scheme was used to 

obtain interface values. Results showed that for
63 1010  Ra , the flow regime was laminar.

 

 

 Governing Equations 

The fluid flow is governed by the general 

conservation laws of mass, momentum and 

energy.  

 

Mass Conservation Equation 
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Momentum Conservation  Equation   
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Energy Conservation Equation 
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 In a turbulent flow field, each of the flow 

variables is regarded as consisting of a mean or 

average value      and a fluctuating value     

such that: 

     ttxtx   ,,   (4)  

  Denotes the value of a flow property at a 

particular instance and location, whereas  and 

'   denotes the mean and fluctuating values of  

respectively.  This technique of separating the 

average and the fluctuating parts of a quantity is 

referred to as Reynolds decomposition. The 

average value   is defined as 
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where t is the time averaging interval chosen 

such that it is sufficiently large. This implies that 

the mean value  is a function of space only. 

Consequently,  

   ixtx  ,   (6) 

The governing equations 1-3 are decomposed 

and averaged, and assumptions coupled with the 

Boussinesq assumption imposed to yield  
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Treatment of Turbulent Correlations 

In equations (8) and (9), the correlations jiuu

and Tu j are unknown. These terms emanate 

from the fluctuation motion. In addition to the 

stresses caused by pressure and viscosity effects, 

a fluid element experiences stresses emanating 

from the turbulent fluctuations. These 

correlations account for the additional 

momentum and energy transport in turbulent 

flow. The presence of these turbulent correlations 

in the Reynolds averaged equations therefore 

creates need for closure. Researchers have over 

the years attempted to resolve the closure 

problem. Among the numerous attempts is 

turbulence modeling, an approach that either 

expresses the turbulent correlations in terms of 

known quantities or through direct resolution of 

the correlations.  In turbulence modeling, the k

equation is the most fundamental since it 

describes the budget of turbulent kinetic energy.  

The equation is given as 
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The turbulent dissipation  in the k model 

represents the rate of dissipation of turbulent 

kinetic energy. The  - equation is derived from 

the Navier- Stokes equation for fluctuation 

vorticity.  

 
Modeling the Unknown Correlations in the k 

– Equation  

The kinetic energy equation (10) has most of 

its terms containing unknown correlations 

emanating from velocity fluctuations in the 

turbulent flow. It is therefore necessary that we 

model these correlations by use of similarity 

considerations together with the Boussinesq 

assumptions. The modeled kinetic energy 

equation is given as 
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where is the dissipation rate of turbulent 

kinetic energy. 

In order to obtain the k turbulence model, 

we need an equation for . According to (8), 

 kc    

                       
(12)

 
Substituting equation (12) into equation (11) 

yield 

       

 
































































































kc
x

T
g

x

k

xx

u

x

u

x

u

x

k
U

t

k

ik

t

j

tk

jj

i

i

j

j

i
t

j

j

  (13) 

The Shear-Stress Transport k
Turbulence 

Model

  

The k turbulence model is preferred in 

explaining flow behavior in the free stream region 

of a flow domain, while the k  model best 

accounts for flow behavior near a solid boundary. 

Mentor (1994), developed the SST k  
turbulence model by putting into consideration 

the strengths and weaknesses of the k  and 

the k  turbulence models. This model makes 

use of the k model near the solid boundary, 

and transforms to the k model in the free 

stream region. For this reason, the SST K  

turbulence model is considered in the current 

study because it well accounts for the flow 

behavior in the entire flow domain. 

The turbulence equations for the SST k   

are represented as follows: 
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 15)  

The modeled turbulent kinetic energy equation 

is represented by equation (14). Using a similar 
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approach, we now model equation (15) as 

follows: 
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Substituting equation (16) into equation (15) 

yield: 
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Equations (8), (9),(10) (14) and (17) give the 

final set of model equations. 

 

Table 1 Model Constants for the SST k

Turbulence Model. 

 

 

 

Non-Dimensionalization of the Equations 

The set of equations governing the flow contain 

more variables than the number of equations. In 

fluid dynamics, the use of a suitable non-

dimensional scheme is of paramount importance 

in reducing the number of   parameters. In 

addition, Non dimensionalization enables both 

experimental and analytical results to be 

expressed in the most efficient form and makes 

the solution bounded. Besides, it enables us to 

obtain results of a flow regime experiencing a 

given set of conditions by making use of the 

results of a geometrically similar flow. In this 

regard, choose U to represent characteristic 

velocity, 
RL to represent the characteristic length 

and 
*T  to represent the characteristic 

temperature. All other physical properties will be 

non-dimensionalized using their respective 

values at a reference temperature 0T . We now 

apply the relevant scaling variables to the final set 

of modeled equations to obtain the non-

dimensional form of the turbulent equations as 

follows:  
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3.1 Velocity Boundary Conditions 

Since the walls of the cavity are considered 

solid and impermeable, it means that motion can 

only be possible in its own plane, and hence, the 

normal components of velocity are zero.  This is 

because mass cannot penetrate an impermeable 

solid surface. Therefore the velocity components 

0 vu .The velocity boundary conditions are 

thus stated as follows: 
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1,k  2,k  1,  2,  *  
c  1,i  2,i  

*  i  Re  

0.85 1 0.5 0.857 0.31 0.09 0.075 0.0828 0.09 0.072 2.95 
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Numerical Method 

The transport equations presented in section 

3.0 can be expressed into a generic conservation 

form that comprises of all the processes that 

influence the change of a dependent variable in a 

finite volume. The generic conservation form of 

the transport equations is given as  

  





S
xx

u
xt jj

j

j



































                  

 (24)

 

Where  , and S are the dependent 

variable, exchange coefficient and source term of 

  respectively. The generic conservation 

equation has four distinct terms which define the 
processes that affect the transport of  in a finite 

volume. These are the temporal term, the 

convection term, the diffusion term and the 

source term. According to (7), the integral form of 

the generic conservation equation is given as. 

  dvSdv
xx

dvu
x

dv
t

VPVP jjVP

j

jVP

 








































.

 (25) 

Both the convection and the diffusion terms of 
equation (26) represent the flux of   across the 

faces of a finite volume. 

The discretized form of the generic 

conservation equation is given in summation 

form as 

ij

ijnbnb

ij
a

ba 

 



 

(26)

 
In equation (26), the coefficient nba  represents 

the contribution of each of the neighboring finite 

volumes to the dependent variable ij , whereas 

ija  contains the contribution of all terms 

influencing ij . The coefficient b contains the 

contribution of the source terms. We obtain a 

discretization equation of the form of equation 

(26) for temperature in each finite volume. We 

adopt an iterative segregated algorithm to solve 

the equations. The relation below is used to 

modify the values of the coefficients obtained in 

each iteration.

 



ij

predicted

ij
ij )1( 

  
 (27) 

 the relaxation factor is 1 . 

In equation (27), 
predicted

ij
 is the value of the 

new iteration whereas 


ij
 is the value of the 

solution variable in the previous iteration. 

 

Convergence Criterion 

Once the values  ij  have been obtained for 

temperature in all the finite volumes, the solution 

is modified using equation (27). We now obtain 

the absolute residual measure of the dependent 

variable using the relation below: 

baaR nb

nb

nbijijij      (28) 

However, since the values of coefficients nba

and b changes in each finite volume, it is 

necessary that we obtain the local relative error 

by scaling the local residual relative to local value 

of the quantity such that 

ijij

nb

nbnbijij
scaled

ij a

baa

R 

 




  (29) 

In the entire computational domain, we thus 

obtain the overall measure of the scaled residual 

as 



  



CELLSALL

nb

CELLSALL nb

nb

a

baa

R





  (30) 

Equation (30) is used to monitor the 
convergence of an equation. If the overall residual 
reduces by three orders of magnitude then, the 
solution is said to be approaching the actual 
solution. Once the conservation equations have 
converged, the solution does not change with 
further iteration. Consequently, the conservation 
equations are satisfied in the entire solution 
domain. 

The schemes are presented.   
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Results and Discussion 
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The results obtained reveal a non-uniform 

velocity distribution within the flow domain with 

some regions having higher velocities. For all the 

three sets of results, velocity is generally high at 

the upper right and bottom left regions of the flow 

domain. The central part of the flow domain is 

virtually stagnant. There are high velocity 

gradients along the vertical wall of the cavity 

indicating heat transfer by convection. The 

magnitude of velocity decreases with increase in 

distance from the walls of the cavity. However, 

the numerical results obtained using all the three 

linear interpolation schemes were inconsistent 

with bench mark results. 

 

 Conclusion. 

Based on the above findings, we conclude that 

linear interpolation schemes are not appropriate 

for analyzing velocity distribution for convection-

diffusion turbulent flows in confined settings.  

 

 Recommendations for Further Study 

 

In order to gain more acumen on interpolation 

schemes, we recommend further research in the 

following areas: 

(i). Analyzing the distribution of other flow 

variables like pressure and turbulence in 

confined settings. 

(ii). Extension of the study to include non-

linear interpolation schemes in analyzing velocity 

profiles. 

(iii). Extension of the study to include multiple 

heat sources in the flow domain. 
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